RAS PresidiumИсследование Земли из космоса Earth Research from Space

  • ISSN (Print) 0205-9614
  • ISSN (Online) 3034-5405

Quantitative regularities of the morphological structures formed by the linear dunes plains based on space imagery

PII
S30345405S0205961425020058-1
DOI
10.7868/S3034540525020058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
61-68
Abstract
The work presents the results of a study of the structure of a landscape pattern formed by clusters of longitudinal (linear) dunes using methods of mathematical morphology of the landscape. Quantitative patterns of the distribution of the lengths of dunes (lognormal distribution) and the spatial distribution of the points of origin, termination and intersection of Aeolian forms (Poisson distribution) in different physical and geographical regions have been revealed. The similarity of the structure of the drawings with other types of Aeolian morphogenesis is indicated.
Keywords
эоловые процессы продольные барханы математические модели в географии ландшафтный рисунок математическая морфология ландшафта
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
57

References

  1. 1. Бричева С.С., Гоников Т.В., Панин А.В. и др. О происхождении грядового рельефа Курайской котловины (юго-восточный Алтай) в свете морфометрических и георадарных исследований // Геоморфология. 2022. Т. 53. № 4. С. 25–41.
  2. 2. Викторов А.С. Основные проблемы математической морфологии ландшафта. М.: Наука, 2006. 252 с.
  3. 3. Гоников Т.В., Викторов А.С. Модель морфологической структуры грядовых эоловых ландшафтов, сформировавшихся на основе барханных цепей // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2020. № 5. С. 32–39.
  4. 4. Федорович Б.А. Зональность эолового рельефообразовнаия. Динамика и закономерности рельефообразования пустынь. М.: Наука, 1983. 236 с.
  5. 5. Bristow C., Bailey S., Lancaster N. The sedimentary structure of linear sand dunes // Nature. 2000. V. 406. DOI: 10.1038/35017536.
  6. 6. Folk R.L. Longitudinal Dunes of the Northwestern Edge of the Simpson Desert, Northern Territory, Australia, 1. Geomorphology and Grain Size Relationships // Sedimentology.2006. V. 16. DOI: 10.1111/j.1365-3091.1971.tb00217.x.
  7. 7. Guignier L., Niiya H., Nishimori H., Lague D., Valance A. Sand dunes as migrating strings // Physical Review. 2013. V. 87. № 5. DOI: 10.1103/PhysRevE.87.052206.
  8. 8. Lancaster N. Aeolian features and processes // Geological Monitoring: Boulder, Colorado, Geological Society of America. 2009. P. 1‒25.
  9. 9. Lancaster N. Linear dunes // Progress in Physical Geography Earth and Environment. 1982. V. 6. № 4. DOI: 10.1177/030913338200600401.
  10. 10. Livingstone I. New Models for the Formation of Linear Sand Dunes // Geography, 1988. V. 73. № 2. doi.org/10.1080/20436564.
  11. 11. Rozier O., Narteau C., Gadal C., Claudin P., Courrech S. Elongation and stability of a linear dune // Geophysical Research Letters. 2019. V. 46. DOI: 10.48550/arXiv.1912.02722.
  12. 12. Parteli E.J., Duran O., Tsoar H., Schwammle V., Herrmann H.J. Dune formation under bimodal winds // Proceedings of the National Academy of Sciences. 2009. V. 106 (52). DOI: 10.1073/pnas.0808646106.
  13. 13. Pell S.D., Chivas A.R. Williams I.S. Great Victoria Desert: development and sand provenance // Australian Journal of Earth Sciences. 1999. V. 46. DOI: 10.1046/j.1440-0952.1999.00699.x.
  14. 14. Rubin D.M., Hesp P.A. Multiple origins of linear dunes on Earth and Titan // Nature Geoscience. 2009. V. 2. DOI: 10.1038/ngeo610.
  15. 15. Tsoar H. Internal structure and surface geometry of longitudinal (seif) dunes // Journal of Sedimentary Research. 1982. V. 52. DOI: 10.1306/212F8062-2B24-11D7-8648000102C1865D.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library