RAS PresidiumИсследование Земли из космоса Earth Research from Space

  • ISSN (Print) 0205-9614
  • ISSN (Online) 3034-5405

The Problem of Automatic Identification of Leads In the Sea Ice Cover from Satellite Images

PII
S3034540525040046-1
DOI
10.7868/S3034540525040046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
52-61
Abstract
Based on expert detection of leads in the ice cover of the Laptev and East Siberian seas on optical satellite images, we have made verification of the freely available results of existing algorithms for automatic identification of sea ice leads. It is found that none of them can be used to provide data that allows calculating such characteristics of leads as orientation, length and spatial density. We propose to develop an algorithm for automatic detection of leads using a convolutional neural network trained on data from the AARI electronic archive of sea ice leads.
Keywords
разрывы в ледяном покрове арктические моря оптический диапазон верификация данных алгоритмы дешифрирования морского льда нейронная сеть
Date of publication
16.12.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Горбунов Ю.А., Дымент Л.Н., Лосев С.М. Средние многолетние характеристики крупных нарушений сплошности льда в Карском море и в северо-восточной части Баренцева моря. Справочное пособие. Санкт-Петербург: ААНИИ. 2014. 36 с.
  2. 2. Gorbunov Yu.A., Dyment L.N., Losev S.M. Srednie mnogoletnie kharakteristiki krupnyh narusheniy sploshnosti l’da v Karskom more i v severo-vostochnoy chasti Barentseva morya [Average long-term characteristics of large ice discontinuities in the Kara Sea and in the northeastern part of the Barents Sea]. Reference book. Saint-Petersburg: AARI, 2014. 36 p. (In Russian).
  3. 3. Дымент Л.Н., Аксенов П.В., Лосев С.М., Порубаев В.С. Влияние пространственного разрешения снимков ИСЗ на получаемые значения характеристик разрывов в ледяном покрове арктических морей // Исслед. Земли из космоса. 2021. № 3. С. 81–86.
  4. 4. Dyment L.N., Aksenov P.V., Losev S.M., Porubaev V.S. Influence of the spatial resolution of satellite images on the values of the characteristics of ice-cover leads in the Arctic seas // Izvestiya, Atmospheric and Oceanic Physics. 2021. V. 57. P. 1081–1086. https://doi.org/10.1134/S0001433821090462.
  5. 5. Дымент Л.Н., Лосев С.М., Порубаев В.С. Характеристики крупных разрывов в ледяном покрове приатлантической части Арктического бассейна. Справочное пособие. Санкт-Петербург: типография издательства Политехнического университета Петра Великого. 2020. 28 с.
  6. 6. Dyment L.N., Losev S.M., Porubaev V.S. Kharakteristiki krupnyh rasryvov v ledyanom pokrove priatlanticheskoy chasti Arkticheskogo basseyna [Characteristics of large leads in the sea ice cover of the Atlantic part of the Arctic basin]. Reference book. Saint-Peteresburg: AARI, 2020. 28 p. (In Russian).
  7. 7. Кортикова К.Г., Бычкова И.А. Применение сверточной нейронной сети для обнаружения разводий в море Лаптевых по снимкам спутника LANDSAT-8 // Метеорология и гидрология. 2024. № 4. С. 47–54.
  8. 8. Kortikova K.G., Bychkova I.A. Primenenie svertochnoy neyronnoy seti dlya obnaruzheniya razvodiy v more Laptevyh po snimkam sputnika LANDSAT-8 [Application of convolutional neural network for detecting fractures in the Laptev Sea on LANDSAT-8 satellite images] // Meteorologiya i gidrologiya. 2024. № 4. P. 47–54. (In Russian).
  9. 9. Фролов С.В. Влияние ориентации нарушений сплошности льда на эффективность движения судов в Арктическом бассейне в летний период // Проблемы Арктики и Антарктики. 2013. № 3. С. 35–45.
  10. 10. Frolov S.V. Vliyanie orientatsii narusheniy sploshnosti l’da na effectivnost’ dvizheniya sudov v Arkticheskom basseyne v letniy period [Impact of ice discontinuity orientation on the efficiency of ship traffic in the Arctic Basin during the summer period] // Problemy Arktiki i Antarktiki. 2013. № 3. P. 35–45. (In Russian).
  11. 11. Hoffman J.P., Ackerman S.A., Liu Y., Key J.R. The Detection and Characterization of Arctic Sea Ice Leads with Satellite Imagers // Remote Sensing. 2019. V. 11. № 5. P. 521. DOI: 10.3390/rs11050521.
  12. 12. Hoffman J.P., Ackerman S.A., Liu Y., Key J.R. [dataset]. 2020. ftp://frostbite.ssec.wisc.edu.
  13. 13. Hoffman J.P., Ackerman S.A., Liu Y., Key J.R., McConnell I.L. Application of a Convolutional Neural Network for the Detection of Sea Ice Leads // Remote Sensing. 2021. V. 13. № 22. P. 4571. DOI: 10.3390/rs13224571.
  14. 14. Hoffman J.P., Ackerman S.A., Liu Y., Key J.R., McConnell I.L. VIIRS Sea ice leads detections using a U-Net. [dataset]. Dryad. 2022. DOI: org/10.5061/dryad.1vhhmgqwd.
  15. 15. Li M., Liu J., Qu M., Zhang Z., & Liang X. An Analysis of Arctic Sea Ice Leads Retrieved from AMSR-E/AMSR2 // Remote Sensing. 2022. V. 14. № 4. P. 969. DOI: 10.3390/rs14040969.
  16. 16. Reiser F., Willmes S., Heinemann G. A New Algorithm for Daily Sea Ice Lead Identification in the Arctic and Antarctic Winter from Thermal-Infrared Satellite Imagery // Remote Sensing. 2020. V. 12. № 12. P. 1957. DOI: 10.3390/rs12121957.
  17. 17. Willmes S., Heinemann G., Reiser F. ArcLeads: Daily sea-ice lead maps for the Arctic, 2002-2021, NOV-APR. [dataset]. PANGAEA. 2023. DOI: pangaea.de/10.1594/PANGAEA.955561?format=html#mcol1_ds15057268.
  18. 18. Willmes S., Heinemann G., Schnaase F. Patterns of wintertime Arctic sea ice leads and their relation to winds and ocean currents // The Cryosphere. 2023. V. 17. № 8. P. 3291–3308. doi: 10.5194/tc-17-3291-2023.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library