RAS PresidiumИсследование Земли из космоса Earth Research from Space

  • ISSN (Print) 0205-9614
  • ISSN (Online) 3034-5405

Vegetation Response in the Tundra, Forest-Tundra, and Taiga Zones of Western Siberia to Climate Changes in 2000–2022 According to Satellite Data

PII
S3034540525040026-1
DOI
10.7868/S3034540525040026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
25-36
Abstract
The work is devoted to the study of the vegetation response in the tundra, forest-tundra, and taiga zones of Western Siberia to climate change (temperature and precipitation) according to MODIS/Terra+Aqua satellite data for the period (2000–2022). The study is based on the maps of land cover (The MODIS Land Cover Type). Based on maps from 2001, 2010, and 2020, the areas of vegetation classes in tundra, forest-tundra, and taiga were determined. Multidirectional dynamics of the areas of the vegetation classes were noted. Positive trends in the long-term series of average summer (June, July, August) temperature and NDVI values of tundra, forest-tundra, and taiga vegetation for the period 2000–2022 were identified. A slight positive trend was noted in the long-term series of average annual precipitation in the territory of the grass tundra, and a negative trend in the territory of the shrub tundra. Positive trends in the long-term series of average summer NDVI values of vegetation and temperature were identified in the territory of permanent wetlands and forested swamps. Precipitation trends in wetland areas remained unchanged. For the periods (2001–2010) and (2010–2020), the following phenomena were revealed: the movement of the shrub tundra to the north, into the territory of the grass tundra, and the movement of the shrub tundra and northern woodland into the territory of the forest-tundra. The movement of the forest to the north, into the forest-tundra zone, was also noted.
Keywords
Западная Сибирь растительность тундра лесотундра тайга болота площади NDVI температура осадки отклик растительности
Date of publication
04.02.2026
Year of publication
2026
Number of purchasers
0
Views
70

References

  1. 1. Белоновская Е.А., Тишков А.А., Вайсфельд М.А., Глазов П.М., Кренке-мл. А.Н., Морозова О.В., Покровская И.В., Царевская Н.Г., Тертицкий Г.М. “Позеленение” российской Арктики и современные тренды изменения ее биоты // Изв. РАН. Сер. геогр. 2016. № 3. С. 28‒39. doi: 10.15356/0373-2444-2016-3-28-39.
  2. 2. Belonovskaya E.A., Tishkov A.A., Vajsfel’d M.A., Glazov P.M., Krenke-ml. A.N., Morozova O.V., Pokrovskaya I.V., Carevskaya N.G., Tertickij G.M. “Pozelenenie” rossijskoj Arktiki i sovremennye trendy izmeneniya ee bioty [“Greening” of the Russian Arctic and current trends in changes in its biota] // Izv. RAN. Ser. geogr. 2016. № 3. P. 28‒39. doi: 10.15356/0373-2444-2016-3-28-39. (In Russian).
  3. 3. Бондур В.Г., Воробьев В.Е. Космический мониторинг импактных районов Арктики // Исслед. Земли из космоса. 2015. № 4. С. 4–24. doi:10.7868/S0205961415040028.
  4. 4. Bondur V.G., Vorob’ev V.E. Kosmicheskij monitoring impaktnyh rajonov Arktiki [Space monitoring of impact areas of the Arctic] // Issled. Zemli iz kosmosa. 2015. № 4. P. 4–24. doi: 10.7868/S0205961415040028. (In Russian).
  5. 5. Виноградова В.В., Титкова Т.Б., Черенкова Е.А. Динамика увлажнения и теплообеспеченности в переходных ландшафтных зонах по спутниковым и метеорологическим данным в начале ХХI века // Современные проблемы дистанционного зондирования Земли из космоса. 2015. Т. 12. № 2. С. 162‒172.
  6. 6. Vinogradova V.V., Titkova T.B., Cherenkova E.A. Dinamika uvlazhneniya i teploobespechennosti v perekhodnyh landshaftnyh zonah po sputnikovym i meteorologicheskim dannym v nachale ХХI veka [Dynamics of humidification and heat supply in transitional landscape zones according to satellite and meteorological data at the beginning of the 21st century] // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2015. T. 12. № 2. P. 162‒172. (In Russian).
  7. 7. Дюкарев Е.А., Алексеева М.Н., Головацкая Е.А. Исследование растительного покрова болотных экосистем по спутниковым данным // Исследование земли из космоса. 2017. № 2. С. 38–51.
  8. 8. Dyukarev E.A., Alekseeva M.N., Golovackaya E.A. Issledovanie rastitel’nogo pokrova bolotnyh ekosistem po sputnikovym dannym [Study of the vegetation cover of swamp ecosystems using satellite data] // Issledovanie zemli iz kosmosa. 2017. № 2. P. 38–51. (In Russian).
  9. 9. Дюкарев Е.А., Пологова Н.Н., Головацкая Е.А. Технологии дистанционного зондирования для установления структуры лесоболотных комплексов ключевого участка “Бакчарский” // Журнал СФУ. Техника и технологии. 2008. Т. 4. № 1. С. 334‒345.
  10. 10. Dyukarev E.A., Pologova N.N., Golovackaya E.A. Tekhnologii distancionnogo zondirovaniya dlya ustanovleniya struktury lesobolotnyh kompleksov klyuchevogo uchastka “Bakcharskij” [Remote sensing technologies to establish the structure of forest-swamp complexes of the key site “Bakcharsky”] // ZHurnal SFU. Tekhnika i tekhnologii. 2008. T. 4. № 1. P. 334‒345. (In Russian).
  11. 11. Им С.Т., Харук В.И., Ли В.Г. Миграция северной границы вечнозеленых хвойных древостоев в Сибири в XXI столетии // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 1. С. 176–187.
  12. 12. Im S.T., Haruk V.I., Li V.G. Migraciya severnoj granicy vechnozelyonyh hvojnyh drevostoev v Sibiri v XXI stoletii [Migration of the northern border of evergreen coniferous stands in Siberia in the 21st century] // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2020. T. 17. № 1. P. 176–187. (In Russian).
  13. 13. Московченко Д.В., Арефьев С.П., Глазунов В.А., Тигеев А.А. Изменение состояния растительности и геокриологических условий Тазовского полуострова (восточная часть) за период 1988–2016 гг. // Криосфера Земли. 2017. Т. XXI. № 6. С. 3–13. doi: 10.21782/KZ1560-7496-2017-6(3-13).
  14. 14. Moskovchenko D.V., Aref’ev S.P., Glazunov V.A., Tigeev A.A. Izmenenie sostoyaniya rastitel’nosti i geokriologicheskih uslovij Tazovskogo poluostrova (vostochnaya chast’) za period 1988‒2016 gg. [Changes in the state of vegetation and geocryological conditions of the Tazovsky Peninsula (eastern part) for the period 1988 – 2016] // Kriosfera Zemli. 2017. T. XXI. № 6. P. 3–13. doi: 10.21782/KZ1560-7496-2017-6(3-13). (In Russian).
  15. 15. Титкова Т.Б., Виноградова В.В. Отклик растительности на изменение климатических условий в бореальных и субарктических ландшафтах в начале ХХI века // Современные проблемы дистанционного зондирования Земли из космоса. 2015. Т. 12. № 3. С. 75‒86.
  16. 16. Titkova T.B., Vinogradova V.V. Otklik rastitel’nosti na izmenenie klimaticheskih uslovij v boreal’nyh i subarkticheskih landshaftah v nachale ХХI veka [Response of vegetation to changing climatic conditions in boreal and subarctic landscapes at the beginning of the 21st century] // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2015. T. 12. № 3. P. 75‒86. (In Russian).
  17. 17. Титкова Т.Б., Золотокрылин А.Н. Климатическая переходная зона севера России в летних условиях // Изв. РАН. Сер. геогр. 2021. Т. 85. № 5. С. 714–725. doi: 10.31857/S2587556621040142.
  18. 18. Titkova T.B., Zolotokrylin A.N. Klimaticheskaya perekhodnaya zona severa Rossii v letnih usloviyah [Climatic transition zone of northern Russia in summer conditions] // Izv. RAN. Ser. geogr. 2021. T. 85. № 5. P. 714–725. doi: 10.31857/S2587556621040142. (In Russian).
  19. 19. Тишков А.А., Белоновская Е.А., Глазов П.М., Кренке А.Н., и др. Тундра и лес российской Арктики: вектор взаимодействия в условиях современного потепления климата // Арктика: экология и экономика. 2020. № 3 (39). С. 48–61. doi: 10.25283/2223-4594-2020-3-48-61.
  20. 20. Tishkov A.A., Belonovskaya E.A., Glazov P.M., Krenke A.N., i dr. Tundra i les rossijskoj Arktiki: vektor vzaimodejstviya v usloviyah sovremennogo potepleniya klimata [Tundra and forest of the Russian Arctic: vector of interaction in the context of modern climate warming] // Arktika: ekologiya i ekonomika. 2020. № 3 (39). P. 48–61. doi: 10.25283/2223-4594-2020-3-48-61. (In Russian).
  21. 21. Худяков О.И., Решоткин О.В. Эволюция почв в связи с современным потеплением климата // Теоретическая и прикладная экология. 2017. № 2. С. 38–43.
  22. 22. Hudyakov O.I., Reshotkin O.V. Evolyuciya pochv v svyazi s sovremennym potepleniem klimata [Evolution of soils in connection with modern climate warming] // Teoreticheskaya i prikladnaya ekologiya. 2017. № 2. P. 38–43. (In Russian).
  23. 23. Beck P.S.A., Goetz S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences // Environ. Res. Lett. 2012. V. 7. № 029501. P. 10. doi:10.1088/1748-9326/6/4/045501.
  24. 24. Chen Z., Wang W., Fu J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China // Sci. Rep. 2020. V. 10. № 1. 830. doi:10.1038/s41598-020-57910-1.
  25. 25. Cohen J., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J., and Jones J. The relationship between recent Arctic amplification and extreme mid-latitude weather // Nature Geoscience. 2014. V. 7. P. 627–637. doi:10.1038/ngeo2234.
  26. 26. Degermendzhi A.G., Vysotskaya G.S., Somova L.A., Pisman T.I., and Shevyrnogov A.P. Long-Term Dynamics of NDVI-Vegetation for Different Classes of Tundra Depending on the Temperature and Precipitation // Doklady Earth Sciences. 2020. V. 493. Part 2. P. 658–660. doi: 10.31857/S2686739720080046.
  27. 27. Forbes B.C., Fauria M.M., Zetterberg P. Russian Arctic war­ming and “greening” are closely tracked by tundra shrub willows // Global Change Biology. 2010. V. 16. P. 1542–1554. doi: 10.1111/j.1365-2486.2009.02047.x.
  28. 28. Gonsalez P., Neilson R.P., Lenihan J.M., and Drapec R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change // Global Ecology and Biogeography. 2010. V.19. P. 755–768. doi:10.1111/j.1466-8238.2010.00558.x.
  29. 29. Miles V.V., Esau I. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia // Environ. Res. Lett. 2016. V. 11. № 11. P. 115002. doi: iopscience.iop.org/1748-9326/11/11/115002.
  30. 30. Raynolds M.K., Walker D.A., Epstein H.E., Pinzon J.E., and Tucker C.J. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHR-NDVI // Remote Sensing Letters. 2012. V. 3. № 5. P. 403‒411. doi: 10.1080/01431161.2011.609188.
  31. 31. Seddon A.W.R, Macias-Fauria M., Long P.R., Benz D., Willis K.J. Sensitivity of global terrestrial ecosystems to climate variability // Nature. 2016. № 531. P. 229–232.
  32. 32. Shi S., Wang P., Zhang Y., Yu J. Cumulative and time-lag effects of the main climate factors on natural vegetation across Siberia // Ecological Indicators. 2021. V. 133. 108446. doi: 0.1016/j.ecolind.2021.108446.
  33. 33. Shi S., Wang P., Yu J. Vegetation greening and climate change promote an increase in evapotranspiration across Siberia // Journal of Hydrology. 2022. V. 610. 127965. doi: 10.1016/j.jhydrol.2022.127965.
  34. 34. Walter C., Huttich C., Urban M. et al. Modelling the Arctic taiga – tundra ecotone using ALOS PALSAR and optical earth observation data. // Int. J. Appl. Earth Obs. Geoinf. 2019. V. 81. P. 195–206. http://refhub.elsevier.com/S1470-160X (21)01111-0/h0385.
  35. 35. Wu J., Liu L., Sun C., Su Y., Wang C., Yang J., Liao J., He X., Li Q., Zhang C., Zhang H. Estimating rainfall interception of vegetation canopy from MODIS imageries in Southern China // Remote Sensing. 2019. V. 11. № 21. doi: 10.3390/ rs11212468.
  36. 36. Zhang Y., Parazoo N.C., Williams A.P., Zhou S., Gentine P. Large and projected strengthening moisture limitation on end-of-season photosynthesis // Proc. Natl. Acad. Sci. 2020. V. 117. № 17. 9216. doi: 10.1073/pnas.1914436117.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library