RAS PresidiumИсследование Земли из космоса Earth Research from Space

  • ISSN (Print) 0205-9614
  • ISSN (Online) 3034-5405

Low-Frequency Wind Field Variability in the Chilean Upwelling Region

PII
10.31857/S0205961424060085-1
DOI
10.31857/S0205961424060085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
96-106
Abstract
This paper analyzes the impact of changes in surface wind (SW) speed and direction in the northern and southern parts of the Chilean upwelling (CA) on the interannual and interdecadal variability of the Ekman upwelling index. Satellite data were used for the period 1988 – 2022’s. It is shown that the increase in wind speed in the northern part of the CA region during 1997–2004 was mainly accompanied by the change in the direction of SW in the coastal zone which favors the upwelling intensification. For other periods (with the exception of certain years) this pattern was not case. In general, wind speed changes in the northern part of the CA region impact a little bit more effectively the changes in the upwelling index than changes in the SW direction. In the southern CA part, the change in the Ekman upwelling index is mostly determined by the change in the SW speed. Long-term variability of wind speed in the upwelling zone is realized in the form of a multidecadal oscillation, the period of which is estimated at 65-70 years which coincides with the typical period of the Atlantic multidecadal oscillation.
Keywords
экмановский индекс апвеллинга центр масс скорость и направление приповерхностного ветра субтропический максимум давления межгодовая и междекадная изменчивость
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Аверьянова Е.А., Полонский А.Б. Исследование изменчивости турбулентных потоков тепла с использованием разложения на эмпирические ортогональные функции // Заключительный отчет по НИР “Фундаментальные исследования процессов в климатической системе, определяющих пространственно-временную изменчивость природной среды глобального и регионального масштабов”, регистрационный № НИОКТР 121122300074-7. 2023. С. 19–27.
  2. 2. Вершовский М.Г., Кондратович К. В. Южно-тихоокеанский субтропический антициклон: интенсивность и локализация // Метеорология и гидрология. 2007. №12. С. 29–34.
  3. 3. Полонский А.Б., Воскресенская Е.Н. О статистической структуре гидрометеорологических полей в Северной Атлантике // Морской гидрофизический журнал. 2004. №1. С. 14–25.
  4. 4. Abrahams A., Schlegel R.W., Smit A.J. Variation and Change of Upwelling Dynamics Detected in the World’s Eastern Boundary Upwelling Systems // Front. Mar. Sci. 2021. V. 8. 626411. https://doi.org/10.3389/fmars.2021.626411
  5. 5. Aguirre C., García-Loyola S., Testa G., Silva D., Farías L. Insight into anthropogenic forcing on coastal upwelling off south-central Chile // Elementa: Sci. Anthropocene. 2018. V. 6(1). 59. https://doi.org/10.1525/elementa.314
  6. 6. Aguirre C., Pizarro O., Strub P.T., Garreaud, R., Barth J.A. Seasonal dynamics of the near-surface alongshore flow off central Chile // J. Geophys. Res. Ocean. 2012. 117. https://doi.org/10.1029/2011JC007379
  7. 7. Ancapichún S., Garcés-Vargas J. Variability of the Southeast Pacific Subtropical Anticyclone and its impact on sea surface temperature off north-central Chile // Cienc. Mar. 2015. V. 41. P. 1–20.
  8. 8. Bakun A. Global climate change and intensification of coastal ocean upwelling // Science. 1990. V. 247. P. 198–201. https://doi.org/10.1126/science.247.4939.198
  9. 9. Bakun A., Black B.A., Bograd S.J., García-Reyes M., Miller A.J., Rykaczewski R.R., et al. Anticipated effects of climate change on coastal upwelling ecosystems // Curr. Clim. Change Rep. 2015. V. 1. P. 85–93. https://doi.org/10.1007/s40641-015-0008-4
  10. 10. Bello M., Barbieri M., Salinas S., Soto L. Surgencia costera en la zona central de Chile, durante el ciclo El Niño-La Niña 1997–1999. In El Niño-La Niña 1997–2000. // Sus Efectos en Chile. CONA, Chile, Valparaíso. 2004. P. 77–94.
  11. 11. Bordbar M.H., Mohrholz V., Schmidt M. The Relation of Wind-Driven Coastal and Offshore Upwelling in the Benguela Upwelling System // J. of phys. Oceanography, 2021. V. 51. P. 3117–3133. https://doi.org/10.1175/JPO-D-20-0297.1
  12. 12. Carr M.E., Kearns E.J. Production regimes in four Eastern Boundary Current systems // Deep Sea Res. 2003. Part II: Top. Stud. Oceanogr. V. 50. P. 3199–3221.
  13. 13. Center of mass, 2023. URL: https://en.wikipedia.org/wiki/Center_of_mass (date of access: 10.12.2023).
  14. 14. Climate Data Store, 2023. URL: https://cds.climate.copernicus.eu/cdsapp (date of access: 10.12.2023).
  15. 15. Cropper T.E., Hanna E., Bigg G.R. Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012 // J. Deep-Sea Research. 2014. Part I. V. 86. P. 94–111. https://doi.org/10.1016/j.dsr.2014.01.007
  16. 16. FAO. El Estado Mundial de la Pesca y la Acuicultura 2016. Contribución a la Seguridad Alimentaria y la Nutrición Para Todos; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Roma, Italia. 2016. 224 p.
  17. 17. Fuenzalida R., Schneider W., Garcés-Vargas J., Bravo L. Satellite altimetry data reveal jet-like dynamics of the Humboldt Current // J. Geophys. Res. Ocean. 2008. 113. https://doi.org/10.1029/2007JC004684
  18. 18. Garc´ıa-Reyes M., Koval G., Sydeman W.J., Palacios D., Bedriñana-Romano L., DeForest K., Montenegro Silva C., Sepu´ lveda M. and Hines E. Most eastern boundary upwelling regions represent thermal refugia in the age of climate change // Front. Mar. Sci. 2023. V. 10. 1158472. https://doi.org/10.3389/fmars.2023.1158472
  19. 19. Muñoz R., Odette A.V., Pedro A.F., Piero M., Marcus S., Gonzalo S.S. On the phenology of coastal upwelling off central-southern Chile // Dynamics of Atmospheres and Oceans. 2023. V. 104. 101405. https://doi.org/10.1016/j.dynatmoce.2023.101405
  20. 20. Oyarzún D., Brierley C. The future of coastal upwelling in the Humboldt current from model projections // Climate Dynamics. 2019. V. 52. Issue 1–2. P. 599-615. https://doi.org/10.1007/s00382-018-4158-7
  21. 21. Patti B., Guisande C., Vergara A., Riveiro I., Maneiro I., Barreiro A., Bonanno A., Buscaino G., Cuttitta A., Basilone G. Factors responsible for the differences in satellite-based chlorophyll a concentration between the major global upwelling areas // Estuar. Coast. Shelf Sci. 2008. V. 76. P. 775–786. https://doi.org/10.1016/j.ecss.2007.08.005
  22. 22. Pinochet A., José G.-V., Carlos L., Francisco O. Seasonal Variability of Upwelling off Central-Southern Chile // Remote Sens. 2019. V. 11. 1737. https://doi.org/10.3390/RS11151737
  23. 23. Polonsky A.B., Serebrennikov A.N. On the Change in the Sea Surface Temperature in the Benguela Upwelling Region: Part II. Long-Term Tendencies // Izvestiya, Atmospheric and Oceanic Physics. 2020. V.56. No. 9. P. 970–978. https://doi.org/10.1134/ S0001433820090200
  24. 24. Polonsky A.B., Serebrennikov A.N. Influence of Different Satellite Data on Surface Winds on Coastal Upwelling. Part 2: Pacific Ocean // Izvestiya, Atmospheric and Oceanic Physics. 2021. V. 57. No. 12. P. 1670–1679. https://doi.org/10.1134/S0001433821120173
  25. 25. Polonsky A.B., Serebrennikov A.N. What is the Reason for the Multiyear Trends of Variability in the Benguela Upwelling? // Izvestiya, Atmospheric and Oceanic Physics. 2022. V. 58. № 12. P. 1450–1457. https://doi.org/10.1134/S0001433822120192
  26. 26. Remote Sensing Systems, 2023. URL: https://www.remss.com (date of access: 10.12.2023).
  27. 27. Shapiro S.S. and Wilk M.B. An analysis of variance test for normality (complete samples) // Biometrika, 1965. V. 52. P. 591–611
  28. 28. Schneider W., Donoso D., Garcés-Vargas J., Escribano R. Water-column cooling and sea surface salinity increase in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High // Prog. in Oceanogr. 2017. V.151. P. 38–48 http://dx.doi.org/10.1016/j.pocean.2016.11.004 0079-6611
  29. 29. Schwing F.B., Farrell M.O., Steger J.M., Baltz K. Coastal upwelling indices west coast of North America 1946–1995 // NOAA Tech. Rep. NMFS SWFSC 231. 1996. 144 p. NOAA, Seattle, Wash.
  30. 30. Schwing F.B., Mendelssohn R. Increased coastal upwelling in the California Current System. // J. of Geophys. Res.: Oceans. 1997. V. 102. Issue C2. P. 3421–3438. https://doi.org/10.1029/96JC03591
  31. 31. Strub P.T., James C., Montecino V., Rutllant J.A., Blanco J.L. Ocean circulation along the southern Chile transition region (38°–46° S): Mean, seasonal and interannual variability, with a focus on 2014–2016 // Prog. Oceanogr. 2019. 172. https://doi.org/10.1016/j.pocean.2019.01.004
  32. 32. Tim N., Zorita E., Hünicke B. Decadal variability and trends of the Benguela Upwelling System as simulated in a high ocean-only simulation // Ocean Sci. 2015. V. 11. P. 483–502. https://doi.org/10.5194/os-11–483–2015
  33. 33. Varela R., Álvarez I., Santos F., et al. Has upwelling strengthened along worldwide coasts over 1982-2010? // Sci. Rep. 2015. V. 5. 10016. https://doi.org/10.1038/srep10016
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library