- PII
- 10.31857/S0205961424010064-1
- DOI
- 10.31857/S0205961424010064
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 65-77
- Abstract
- The paper presents the results of comparing the atmospheric carbon dioxide reanalysis data and phenological phases of large freshwater areas located in the boreal and subarctic zone for 2012–2020. The data from the CAMS global greenhouse gas reanalysis, which are three-dimensional fields of aerosols and chemical constituents in the atmosphere, with full coverage of the globe, were used in this work. The data used in this study were the average CO2 content in the air column over the water areas. The phenological phases of freshwater bodies (water surface, ice cover, ice destruction) were determined using data from the MIRAS microwave radiometer of the SMOS satellite. The comparison and analysis showed that the CO2 concentration in the atmosphere over the studied water areas has a seasonal cyclic character. The minimum concentration corresponds to the summer period due to strong photosynthesis in water areas, as a result of which carbon dioxide is absorbed in the water column. The maximum concentration of CO2 over water areas corresponds to the period of destruction of the ice cover, leading to the release of carbon dioxide accumulated during the winter period, which is “sealed” in the ice and in the water column under the ice. In freezing lakes located in the boreal zone, in addition to the stable spring CO2 maximum, a strong short-term release of carbon dioxide is sometimes observed, also corresponding to the stage of ice cover destruction. This emission is explained by the higher bioproductivity of water bodies in the boreal zone compared to water areas in the subarctic zone.
- Keywords
- крупные акватории фенологические фазы бореальная и субарктическая зона углекислый газ спутниковая микроволновая радиометрия ледяной покров
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Войнов Г. Н., Налимов Ю. В., Пискун А. А., Становой В. В., Усанкина Г. Е. Основные черты гидрологического режима Обской и Тазовской губ (лед, уровни, структура вод). СПб.: Нестор-История, 2017. 192 с.
- 2. Каретников С. Г. Проявление климатических изменений в ледовом режиме Ладожского озера за последние 55 лет // Лед и Снег. 2021. Т. 61. № 2. С. 241–247.
- 3. https://doi.org/10.31857/S2076673421020085.
- 4. Романов А. Н., Хвостов И. В., Тихонов В. В., Шарков Е. А.Оценка гидрологических изменений водно-болотных угодий российской Арктики, Субарктики и северной тайги по данным микроволнового дистанционного зондирования // Исслед. Земли из космоса. 2022. № 4. С. 12–24. DOI: 10.31857/S020596142204008X.
- 5. Румянцев В. А., Драбкова В. Г., Измайлова А. В. Великие озера мира. СПб.: Лема, 2012. 370 с.
- 6. Тихонов В. В., Хвостов И. В., Романов А. Н., Шарков Е. А.Анализ изменений ледяного покрова пресноводных водоемов по данным SMOS // Исслед. Земли из космоса. 2017. № 6. С. 46–53. DOI: 10.7868/S0205961417060045.
- 7. Тихонов В. В., Хвостов И. В., Романов А. Н., Алексеева Т. А., Синицкий А. И., Тихонова М. В., Шарков Е. А., Комарова Н. Ю. Межгодовые вариации собственного микроволнового излучения Обской губы в период ледостава и их связь с гидрологическими и климатическими изменениями региона // Соврем. проблемы дистанц. зондирования Земли из космоса. 2021. Т. 18. № 6. С. 185–199. DOI: 10.21046/2070–7401-2021-18-6-185-199.
- 8. Denfeld B. A., Wallin M. B., Sahlée E., Sobek S., Kokic J., Chmiel H. E., Weyhenmeyer G. A. Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics // Boreal Environment Research. 2015. V. 20. No. 6. P. 679–692.
- 9. Denfeld B. A., Kortelainen P., Rantakari M., Sobek S., Weyhenmeyer G. A. Regional Variability and Drivers of Below Ice CO2 in Boreal and Subarctic Lakes // Ecosystems. 2016. V. 19. P. 461–476. https://doi.org/10.1007/s10021-015-9944-z.
- 10. Engel F., Farrell K. J., McCullough I.M., Scordo F., Denfeld B. A., Dugan H. A., de Eyto E., et al. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters // The Science of Nature. 2018. V. 105. Art. No. 25. 9 p. DOI: 10.1007/s00114-018-1547-z.
- 11. Gutierrez A., Castro R., Vieira P., Lopes G., Barbosa J. SMOS L1 Processor L1c Data Processing Model. Lisboa: DEIMOS Engenharia, 2017. 83 p.
- 12. Inness A., Ades M., Agustí-Panareda A., Barré J., Benedictow A., Blechschmidt A.-M., Dominguez J. J., et al. The CAMS reanalysis of atmospheric composition // Atmospheric Chemistry and Physics. 2019. V. 19. No. 6. P. 3515–3556.
- 13. https://doi.org/10.5194/acp-19-3515-2019.
- 14. Karlsson J., Giesler R., Persson J., Lundin E. High emission of carbon dioxide and methane during ice thaw in high latitude lakes // Geophysical Research Letters. 2013. V. 40. No. 6. P. 1123–1127. DOI: 10.1002/grl.50152.
- 15. Kerr Y. H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.-J., et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle // Proc. IEEE. 2010. V. 98. No. 5. P. 666–687. DOI: 10.1109/JPROC.2010.2043032.
- 16. Rantala M. V., Nevalainen L., Rautio M., Galkin A., Luoto T. P.Sources and controls of organic carbon in lakes across the subarctic treeline // Biogeochemistry. 2016. No. 129. P. 235–253. DOI: 10.1007/s10533-016-0229-1.
- 17. Sahr K., White D., Kimerling A. J. Geodesic Discrete Global Grid System // Cartography and Geographic Information Science. 2003. V. 30. No. 2. P. 121–134.
- 18. Tikhonov V., Khvostov I., Romanov A., Sharkov E. Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data // The Cryosphere. 2018. V. 12. No. 8. P. 2727–2740. https://doi.org/10.5194/tc-12-2727-2018.
- 19. Tikhonov V. V., Romanov A. N., Khvostov I. V., Alekseeva T. A., Sinitskiy A. I., Tikhonova M. V., Sharkov E. A., Komarova N. Yu. Analysis of the hydrological regime of the Gulf of Ob in the freezing period using SMOS data // Российская Арктика (Russian Arctic). 2022. № 2(17). P. 44–71. DOI: 10.24412/2658-4255-2022-2-44-71.
- 20. Tranvik L. J., Downing J. A., Loiselle S. A., Striegl R. G., Ballatore Th.J., Dillon P., Finlay K., et al. Lakes and reservoirs as regulators of carbon cycling and climate // Limnology and Oceanography. 2009. V. 54. No. 6. Pt. 2. P. 2298–2314. DOI: 10.4319/lo.2009.54.6_part_2.2298.
- 21. Wen Z., Shang Y., Lyu L., Li S., Tao H., Song K. A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology // Remote Sensing. 2021. V. 23. No. 13. Art. No. 4916. 15 p. https://doi.org/10.3390/rs13234916.
- 22. Weyhenmeyer G. A., Karlsson J. Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures // Limnology and Oceanography. 2009. V. 54. No. 6. Pt. 2. P. 2513–2519. DOI: 10.4319/lo.2009.54.6_part_2.2513.
- 23. Weyhenmeyer G. A., Kosten S., Wallin M. B., Tranvik L. J., Jeppesen E., Roland F. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs // Nature Geoscience. 2015. V. 8. Iss. 12. P. 933–938. https://doi.org/10.1038/ngeo2582.
- 24. Zimov S. A., Schuur E. A.G., Chapin F. S. Permafrost and the global carbon budget // Science. 2006. V. 312. P. 1612–1613. DOI: 10.1126/SCIENCE.1128908.