RAS PresidiumИсследование Земли из космоса Earth Research from Space

  • ISSN (Print) 0205-9614
  • ISSN (Online) 3034-5405

Magnetic cleanliness of CubeSat 1U satellites for measuring Earth’s magnetic field

PII
10.31857/S0205961424020073-1
DOI
10.31857/S0205961424020073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
80-87
Abstract
The work is devoted to the analysis of the possibility of implementing measurements of the Earth's magnetic field on board small spacecraft of the CubeSat 1U format. In particular, the problem of ensuring magnetic purity for the operation of magnetometers as part of nanosatellites was solved. The required accuracy of the equipment was estimated and the recommended maximum level of the spacecraft's residual magnetic field was determined – 0.1 nT. Ensuring the required value of the background of the magnetic field is possible only if the platform and the magnetometer are spaced apart - due to a special boom. To estimate its minimum length, the simulation of the magnetic field of the nanosatellite was carried out. The resulting value was 1250 cm.
Keywords
магнитометр магнитное поле Земли наноспутник магнитная чистота
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Абрамова Д.Ю., Филиппов С.В., Абрамова Л.М. О возможностях использования спутниковых геомагнитных наблюдений в исследовании геолого-тектонического строения литосферы // Исследование Земли из Космоса. 2020. № 2. С. 69–81. doi: 10.31857/S0205961420010029.
  2. 2. Альперт Я.Л., Гуревич А.В., Питаевский Л.П. Искусственные спутники в разреженной плазме. М.: Наука, 1964. 382 с.
  3. 3. Копытенко Ю.А., Петрова А.А., Алексеев В.Ф., Гурьев И.С., Лабецкий П.В. Применение высотных моделей магнитного поля земли для решения геофизических задач // Космические исследования. 2019. T. 57. № 3. С. 185–191. doi: 10.1134/S0023420619030063.
  4. 4. Овчинников М.Ю., Пеньков В.И., Ролдугин Д.С., Иванов Д.С.Магнитные системы ориентации малых спутников. М.: ИПМ им. М. В. Келдыша, 2016. 366 с. doi: 10.20948/mono-2016-ovchinnikov.
  5. 5. Balogh A. Planetary Magnetic Field Measurements: Missions and Instrumentation // Space Sci Rev. 2010. V. 152. P. 23–97. doi: 10.1007/s11214-010-9643-1.
  6. 6. Behannon K.W., Acuna M.H., Burlaga L.F., Lepping R.P., Ness N.F., Neubauer F.M. Magnetic Field Experiment for Voyagers 1 and 2 // Space Science Reviews. 1977. V. 21. Iss. 3. P. 235–257. doi: 10.1007/BF00211541.
  7. 7. Cain J.C., Sweeney R.E. The POGO data // J. Atmos. Sol. Terr. Phys. 1973. V. 35. P. 1232–1247. DOI: 10.1016/0021-9169(73)90021-4.
  8. 8. Denton M.H., Borovsky J.E., Stepanova M., Valdivia J.A. Unsolved problems of magnetospheric physics // J Geophys Res. 2016. V. 121. No. 11. P. 10783–10785. DOI: 10.1002/2016JA023362.
  9. 9. Glassmeier K., Boehnhardt H., Koschny D., Kührt E., Richter I. The Rosetta Mission: Flying Towards the Origin of the Solar System // Space Science Reviews. 2007. V. 128. Iss. 1–4 P. 1–21. doi: 10.1007/s11214-006-9140-8.
  10. 10. Hulot G., Leger J.-M., Clausen L.B.N., Deconinck F., Coïsson P., Vigneron P., Alken P., Chulliat A., Finlay Ch.C., Grayver A., Kuvschinov A., Olsen N., Thébault E., Bertrand F., Jager T., Häfner T. NanoMagSat, a 16U nanosatellite constellation high-precision magnetic project to initiate permanent low-cost monitoring of the Earth’s magnetic field and ionospheric environment // EGU General Assembly. 19–30 Apr 2021, EGU21–14660. doi: 10.5194/egusphere-egu21-14660.
  11. 11. Hulot G., Finlay C.C., Constable C.G., Olsen N., Mandea M. The Magnetic Field of Planet Earth // Space Sci Rev. 2010. V. 152. P. 159–222. DOI: 10.1007/s11214-010-9644-0.
  12. 12. Langel R., Ousley G., Berbert J., Murphy J., Settle M. The MAGSAT mission // Geophysical Research Letters. 1982. V. 9. Iss. 4. P. 243–245. DOI: 10.1029/GL009i004p00243.
  13. 13. Olsen N., Holme R., Hulot G., Sabaka T., Neubert T., Tøffner-Clausen L., Primdahl F., Jørgensen J., Leger J.-M., Barraclough D., Bloxham J., Cain J., Constable C., Golovkov V., Jackson A., Kotze P., Langlais B., Macmillan S., Mandea M., Merayo J., Newitt L., Purucker M., Risbo T., Stampe M., Thomson A., Voorhies C. Ørsted Initial Field Model // Geophysical Research Letters. 2000. V. 27. Iss. 22. P. 3607–3610. DOI: 10.1029/2000GL011930.
  14. 14. Piessens R., de Doncker-Kapenga E., Überhuber Ch.W., Kahaner D. QUADPACK: A subroutine package for automatic integration. Springer-Verlag. ISBN978-3-540-12553-2. 1983. doi: 10.1007/978-3-642-61786-7.
  15. 15. Sutcliffe P.R., Ndiitwani D.C., Luhr H., Heilig B. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review // Data Sci. J. 2011. V. 10, IAGA10-IAGA18. doi: 10.2481/dsj.IAGA-03.
  16. 16. Svedhema H., Titov D.V., McCoy D., Lebreton J.-P., Barabash S., Bertauxd J.-L., Drossarte P., Formisano V., Häusler B., Korablev O., Markiewicz W. J., Nevejans D., Pätzold M., Piccioni G., Zhang T. L., Taylor F. W., Lellouch E., Koschny D., Witasse O., Eggel H., Warhaut M., Accomazzo A., Rodriguez-Canabal J., Fabrega J., Schirmann T., Clochet A., Coradini M. Venus Express – The first European mission to Venus // Planetary and Space Science. 2007. V. 55. Iss. 12. P. 1636–1652. doi: 10.1016/j.pss.2007.01.013.
  17. 17. ZhongYi Chu, YiAn Lei. Design theory and dynamic analysis of a deployable boom // Mechanism and Machine Theory. 2014. V. 71. P. 126–141. doi: 10.1016/j.mechmachtheory.2013.09.009.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library