- PII
- 10.31857/S0205961424020034-1
- DOI
- 10.31857/S0205961424020034
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 21-31
- Abstract
- The paper presents the results of monitoring natural forest regrowth on abandoned agricultural land in the Middle Volga Region using remote sensing methods. The Mari El Republic was chosen as the test site for this research. The use of modern remote sensing methods makes it possible to identify and evaluate areas of natural forest regrowth on abandoned agricultural lands with higher accuracy and at lower financial and labour costs. Minimum noise fraction transformed images (Landsat-8 OLI-8) were used in a combination of sixth (mid-infrared), fifth (near-infrared) and second (blue) spectral channels for the research. The findings revealed that there is a steady process of mass forest regrowth on abandoned agricultural land in Mari El. The total area of agricultural land used in the research was 763.69 thousand hectares. Reforestation with deciduous species is observed on a territory of 135.5 thousand hectares, which makes up 17.7% of the total area of agricultural land and 49.9% of the territory of fallow land in the Republic of Mari El. Reforestation with coniferous species is observed on 26.7 thousand hectares, which amounts to 3.5% and 9.85%, respectively. Future studies can address anthropogenic and natural impacts on the structure and dynamics of new forest stands. A comprehensive analysis of the density of forest regrowth on abandoned agricultural lands should be carried out using existing maps of agricultural land, population density, and other socio-economic factors.
- Keywords
- залежь MNF-трансформация тематические карты дистанционное зондирование Landsat-8 OLI
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Беляев В.В., Кононов О.Д., Карабан А.А., Старицын В.В. Состояние древесной растительности на землях, выбывших из хозяйственного оборота в Архангельской области // Вестник Северного (Арктического) федерального университета. 2013. Вып. 2. С. 5–11.
- 2. Доклад о состоянии и использовании земель в Республике Марий Эл в 2018 году. Электронный ресурс: https://rosreestr.gov.ru/upload/to/respublika-mariy-el/% D0%BF%D1% 80%D0%BE%D1%82%D0%BE%D0%BA%D0%BE%D0%BB%D1%8B/%D0%94%D0%BE%D0%BA%D0%BB%D0%B0%D0%B4%20%D0%B7%D0%B0%202018%20%D0%A0%D0%9C%D0%AD.doc (дата обращения 01.03.2023).
- 3. Доклад о состоянии и использовании земель сельскохозяйственного назначения Российский Федерации в 2019 году. Электронный ресурс: https://mcx.gov.ru/upload/iblock/ fb1/fb12ab74bc70b5091b0533f44a4d8dba.pdf (дата обращения 01.03.2023).
- 4. Ерусалимский В.И. Лес и пашня // Лесное хозяйство. 2011. № 2. С. 14–15.
- 5. Кирейчева Л.В. Шевченко В.А., Юрченко И.Ф. Оценка экономической эффективности ввода в агропроизводство залежных земель Нечерноземной зоны РФ // Московский экономический журнал. 2021. № 3. С. 245–255.
- 6. Курбанов Э.А., Воробьев О.Н., Незамаев С.А., Губаев А.В., Лежнин С.А., Полевщикова Ю.А. Тематическое картирование и стратификация лесов Марийского Заволжья по спутниковым снимкам Landsat-8 OLI // Йошкар-Ола: Вестник ПГТУ, Серия: Лес. Экология. Природопользование. 2013. № 3. С. 72–82.
- 7. Лежнин С.А. Дистанционный метод оценки формирования молодняков на залежах Марийского лесного Заволжья по спутниковым снимкам // Дис. … канд. с.-х. наук. Йошкар-Ола, 2013. 167 с.
- 8. Лежнин С.А., Музурова Р.Л. Оценка вторичной сукцессии на залежах Республики Марий Эл // Лесные экосистемы в условиях изменения климата: биологическая продуктивность и дистанционный мониторинг: материалы международной конференции. Йошкар-Ола: ПГТУ, 2019. С. 126–135.
- 9. Стыценко Е.А. Возможности распознавания сельскохозяйственных угодий с использованием методики совместной автоматизированной обработки разносезонных многозональных космических изображений // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14, № 5. С. 172–183.
- 10. Шихов А.Н., Герасимов А.П., Пономарчук А.И., Перминова Е. С. Тематическое дешифрирование и интерпретация космических снимков среднего и высокого пространственного разрешения [Электронный ресурс]: учебное пособие // Пермский государственный национальный исследовательский университет. 2020. 191 с. Режим доступа: http://www.psu.ru/files/docs/science/books/uchebnie-posobiya/shikhov-gerasimov-ponomarchukperminova-tematicheskoe-deshifrovanie-i-interpretaciyakosmicheskih-snimkov.pdf
- 11. Alcantara C., Kuemmerle T., Prishchepov A. V., Radeloff V. C. Mapping abandoned agriculture with multitemporal MODIS satellite data // Remote Sensing of Environment. 2012. Vol. 124. P. 334–347.
- 12. Boardman J.W. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing // Environmental Research Institute of Michigan. 1994. P. 407–418.
- 13. Dannenberg M.P., Hakkenberg C.R., Song C. Consistent classification of Landsat-8 OLI time series with an improved automatic adaptive signature generalization algorithm // Remote Sensing. 2016. https://doi.org/10.3390/rs8080691
- 14. Defourny P., Bontemps S., Bellemans N., Cara C., Dedieu G., Guzzonato E., Hagolle O., Inglada J., Nicola L., Rabaute T., Savinaud M., Udroiu C., Valero S., Bégué A., Dejoux J.-F., El Harti A., Ezzahar J., Kussul N., Labbassi K., Lebourgeois V., Miao Z., Newby T., Nyamugama A., Salh N., Shelestov A., Simonneaux V., Traore P. S., Traore S. S., Koetz B. Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world // Remote Sensing of Environment. 2019. № 221. P. 551–568. https://doi.org/10.1016/J.RSE.2018.11.007
- 15. Estel S., Kuemmerle T., Alcántara C., Levers C., Prishchepov A., Hostert P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series // Remote Sensing of Environment. 2015. № 163, P. 312–325. https://doi.org/10.1016/J.RSE.2015.03.028
- 16. Fradette O., Marty C., Faubert P., Dessureault P.-L., Paré M., Bouchard S., Villeneuve C. Additional carbon sequestration potential of abandoned agricultural land afforestation in the boreal zone: A modelling approach // Forest Ecology and Management. 2021. Vol. 499. 119565. https://doi.org/10.1016/j.foreco.2021.119565
- 17. Fraser R. H., Oltho I., Pouliot D. Monitoring land cover change and ecological integrity in Canada’s national parks // Remote Sensing of Environment. 2009. № 113. P. 1397–1409. https://doi.org/10.1016/j.rse.2008.06.019
- 18. Friedl M.A., Sulla-Menashe D., Tan B., Schneider A., Ramankutty N., Sibley A., Huang X. M. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets // Remote Sensing of Environment. 2010. № 114. P. 168–182. https://doi.org/10.1016/j.rse.2009.08.016
- 19. Gómez C., White J.C., Wulder M.A. Optical remotely sensed time series data for land cover classification: a review // ISPRS Journal of Photogrammetry and Remote Sensing. 2016. № 116. P. 55–72. https://doi.org/10.1016/J.ISPRSJPRS.2016.03.008
- 20. Grădinaru S.R., Kienast F., Psomas A. Using multi-seasonal Landsat-8 OLI imagery for rapid identification of abandoned land in areas affected by urban sprawl // Ecological Indicators. 2019. Vol. 96, Pt. 2. P. 79–86.
- 21. Gray J., Song C.H. Consistent classification of image time series with automatic adaptive signature generalization // Remote Sensing of Environment. 2013. № 134. P. 333–341. https://doi.org/10.1016/j.rse.2013.03.022
- 22. Janus J., Bożek P., Mitka B., Taszakowski J., Doroż A. Long-term forest cover and height changes on abandoned agricultural land: An assessment based on historical stereometric images and airborne laser scanning data // Ecological Indicators. 2021. Vol. 120. 106904. https://doi.org/10.1016/j.ecolind.2020.106904
- 23. Kolecka N., Kozak J., Kaim D., Dobosz M., Ginzler C., Psomas A. Mapping secondary forest succession on abandonet agricultural land in the Polish Carpathians // Remote Sensing and Spatial Information Sciences. 2016. Vol. XLI-B8. P. 931–935.
- 24. Levers C., Schneider M., Prishchepov A. V., Estel S. Spatial variation in determinants of agricultural land abandonment in Europe // Science of The Total Environment. 2018. Vol. 644. P. 95–111.
- 25. Liu J., Kuang W.H., Zhang Z.X., Xu X.L., Qin Y.W., Ning J., Zhou W.C., Zhang S.W., Li R.D., Yan C.Z., Wu S.X., Shi X.Z., Jiang N., Yu D.S., Pan X.Z., Chi W.F. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s // Journal of Geographical Sciences. 2014. № 24. P. 195–210. https://doi.org/10.1007/s11442-014-1082-6
- 26. Liu B., Song W. Mapping abandoned cropland using Within-Year Sentinel-2 time series // CATENA. 2023. Vol. 223. 106924. https://doi.org/10.1016/j.catena.2023.106924
- 27. Löw F., Fliemann E., Abdullaev I., Conrad C., Lamers J. P.A. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing // Applied Geography. 2015. Vol. 62. P. 377–390. https://doi.org/10.1016/j.apgeog.2015.05.009
- 28. Mainali K., Evans M., Saavedra D., Mills E., Madsen B., Minnemeyer S. Convolutional neural network for high-resolution wetland mapping with open data: Variable selection and the challenges of a generalizable model // Science of The Total Environment. 2023. Vol. 861. 160622. https://doi.org/10.1016/j.scitotenv.2022.160622
- 29. Nordén B., Olsen S. L., Haug S., Rusch G. Recent forest on abandoned agricultural land in the boreonemoral zone – Biodiversity of plants and fungi in relation to historical and present tree cover // Forest Ecology and Management. 2021. Vol. 489. 119045. https://doi.org/10.1016/j.foreco.2021.119045
- 30. Parés-Ramos I.K., Gould W.A., Aide T.M. Agricultural abandonment, suburban growth, and forest expansion in Puerto Rico between 1991 and 2000 // Ecology and Society. 2008. № 13(8). https://doi.org/10.5751/ES-02479-130201
- 31. Pax-Lenney M., Woodcock C.E., Macomber S.A., Gopal S., Song C.Forest mapping with a generalized classifier and Landsat-8 OLI TM data // Remote Sensing of Environment. 2001. № 77. P. 241–250. https://doi.org/10.1016/S0034-4257 (01)00208-5
- 32. Pedersen N.K., Schmidt I.K., Kepfer-Rojas S. Drivers of tree colonization, species richness, and structural variation during the initial three decades of natural forest colonization in abandoned agricultural soils // Forest Ecology and Management. 2023. Vol. 543. https://doi.org/10.1016/j.foreco.2023.121138
- 33. Phalke A.R., Özdoğan M. Large area cropland extent mapping with Landsat-8 OLI data and a generalized classifier // Remote Sensing of Environment. 2018. Vol. 219. P. 180–195. https://doi.org/10.1016/j.rse.2018.09.025
- 34. Pointereau P., Coulon F.P., Girard M.L., Stuczynski T., Ortega V.S., Del Rio A. Analysis of farmland abandonment and the extent and location of agricultural areas that are actually abandoned or are in risk to be abandoned // JRC Scientific and Technical Reports. 2008 (EUR23411 EN).
- 35. Song W. Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Approach // Sustainability. 2019. Vol. 11. P. 1–24.
- 36. Thenkabail P.S., Knox J.W., Ozdogan M., Gumma M.K., Congalton R.G., Zhuoting W.U., Milesi C., Finkral A., Marshall M., Mariotto I. Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help? // Photogrammetric Engineering & Remote Sensing. 2012. № 78(8). P. 773–782.
- 37. Wittke S., Xiaowei Y., Karjalainen M., Hyyppä J., Puttonen E. Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest // International Journal of Applied Earth Observation and Geoinformation. 2019. Vol. 76. P. 167–178.
- 38. Xu Y., Yu L., Zhao F.R., Cai X., Zhao J., Lu H., Gong P. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat-8 OLI images with a change detection and post-classification approach: experiments from three sites in Africa // Remote Sensing of Environment. 2018. № 218. P. 13–31. https://doi.org/10.1016/J.RSE.2018.09.008